

Engine Control Unit (ECU) Technical Spec

ECOTRONS LLC

COPY RIGHTS ECOTRONS ALL RIGHTS RESERVED

Note: If you are not sure about any specific details, please contact us at info@ecotrons.com.

Product: Engine Control Unit

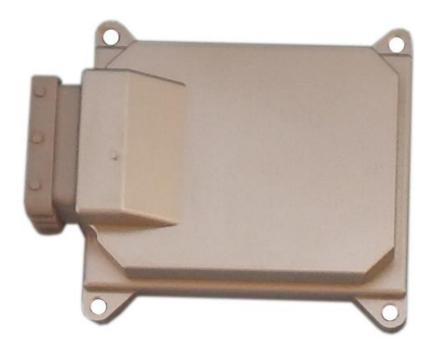
Type: EC2T1CDTCDIA2I

Comment: All the data in the document are tests under

normal conditions

Index	Page	Revision	Date	Note
1		First Edition	7.9.2014	V1.1
2		Second Edition	8.15.2014	V1.2
3		Third Edition	2.20.2017	V1.3

Contents

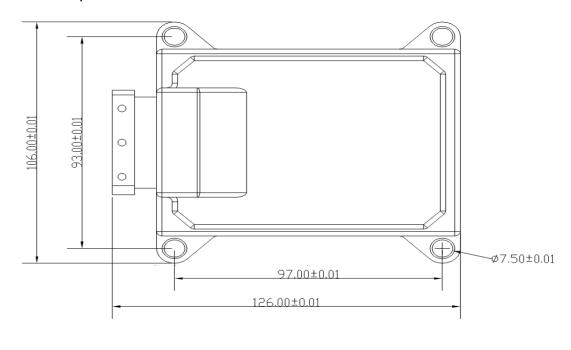

- 1 Overview
- 2 Characteristic and principle
- 3 Technical parameters
- 4 Installations
- 5 Instructions
- 6 Malfunction Indicators and Elimination
- 7 Appendix: mechanical CAD size

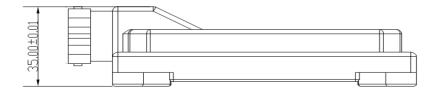
1 Overview

The core part of Ecotrons ECU is **FreeScale**'s 16 bit or 32 bit microprocessor that is specifically designed for powertrain controls. ECU also includes some Application Specific Integrated Circuits, or ASIC chips, from world famous automotive semiconductor manufacturers, like **Infineon**, and **International Rectifier** etc. Most importantly, Ecotrons' ECU contains the state-of-art engine control software which combines both efficiency and flexibility of the modern engine control technology.

Ecotrons has a few small engine ECUs; all small sizes and light weight. One is like the below picture, water proof.

2 Characteristic and principle


2.1 Characteristics


• The 24-pin ECU with an aluminum shell is sealed by pouring sealant. And

there are mounting holes on the shell.

ECU shape size.

2.2 Working Principle

ECU judges the working state of the engine through the sensor measuring data acquisition and calculation. ECU performs Optimization and control tasks according to the existing and stored calibration data.

3 Technical Parameters

Voltage range	9~16VDC
Current	≤60mA
Storage temperature	-40~125℃
Working temperature	-40~125℃
The product weight	≤250g

4 Installations

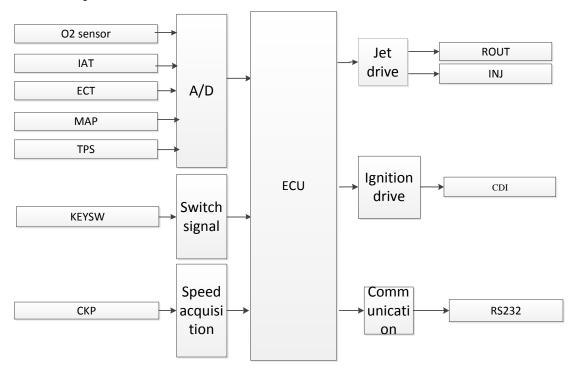
4.1 Installation location

In order to ensure a high reliability, ECU installation should abide by the following principles:

- Mounting position of ECU should have adequate ventilation.
- Avoid the heat transmission to the ECU.
- Away from the ignition system, the EMI is serious.
- It should be installed firmly.
- Avoid the dirty, wet, and splash water.
- Don't let the ECU to prop up the wiring harness.
- Wiring harness should avoid wear and heat.

4.2 Temperature Adaptability

The temperature of location must under the limit (125 °C at any time.


4.3Waterproof Requirements

- The water cannot gather near the ECU connector. It may cause a short.
- All the possibility of contact with water should be ruled out.

5 The Instructions

5.1 System Function

Abbreviation:

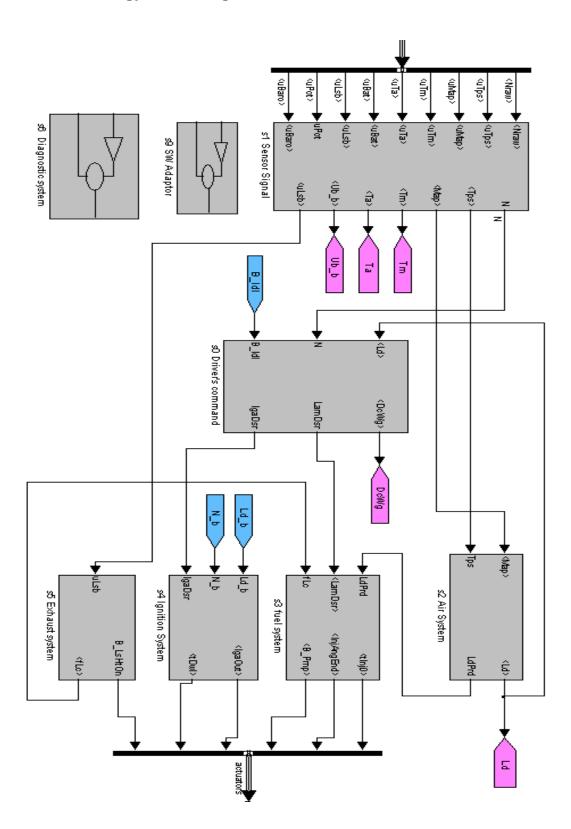
IAT: Intake Air Temperature Sensor

ECT: Engine (Coolant) Temperature or Cylinder Head Temperature Sensor

MAP: Manifold Absolute Pressure Sensor

BARO: Barometric Pressure Sensor

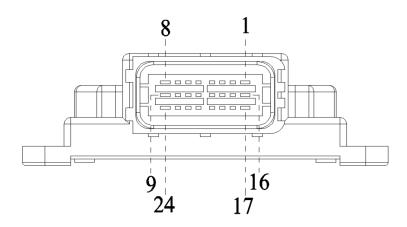
TPS: Throttle Position Sensor


KEYSW: Key Switch or Ignition Switch input

CKP: Crank Position Sensor **ROUT: Relay control Output** INJ: Injector control output

CDI: Capacitor Discharge Ignition Controls

Control Strategy Block Diagram:


Control Strategy Block Diagram (as above)

Major control strategies:

- · Charge detection and prediction.
- Fuel injection controls.
- · Ignition system controls.
- Fuel pump controls.
- EVAP emission controls.
- Transient fuel compensations.
- Decel-fuel-cut-off.
- Altitude compensations.
- Temperature compensations (winter, summer, etc.).
- Engine protections.
- · Diagnostics and serial communications.

5.2ECU Pin Definition and Description

ECU Port Description:

Number	Define	instructions	input/output	Voltage range
1	O2HOUT1	Oxygen sensor input	output	0~16V

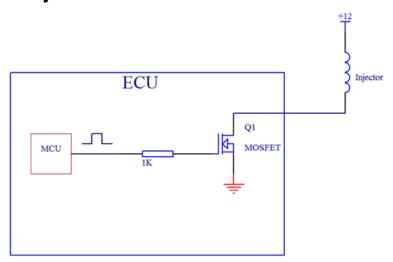
Engine Control Unit(ECU-4T2C) technical spec-V1.3

2	+12V	Battery terminal positive	Input	9~16V
3	GND-P	Power ground	output	0
4	VCC	5v power supply output	output	5V
5	RXD	serial port	output	-15~+15V
		communication sender		
6	SWITCH	Switch input	Input	0~5V
7	TPS	Throttle position sensor	Input	0~5V
8	GND-A	Sensor ground	output	0
9	IACA	Idle speed motor drive A	output	0~16V
10	MAP	Manifold air pressure	Input	0~5V
11	IACD	Idle speed motor drive D	output	0~16V
12	TXD	serial port	Input	-15~+15V
		communication receiver		
13	IAT	Intake air temperature	Input	0~5V
		sensor input		
14	KEYSW	Key switch	Input	0~16V
15	INJ2	Fuel injector # 2 driver	Output	0~16V
		output		
16	INJ1	Fuel injector # 1 driver	Output	0~16V
		output		
17	GND-P	Power ground	Output	0
18	CDI_CTL	CDI control output	Output	0~4V
19	IACC	Idle speed motor drive C	Output	0~16V
20	ROUT	fuel pump relay driver	Output	0~16 V
		output		
21	ECT	The engine temperature	Input	0~5 V
		sensor		
22	IACB	Idle speed motor drive B	Output	0~16V
23	O2IN1	Oxygen sensor input	Input	0~1V
24	CKP	The crank position	Input	2~150V
		sensor input		

5.3 ECU function module

5.3.1 Analog Signal Acquisition Channel

AD conversion channel can convert analog signals from sensor to digital signals. The ECU can get signals from the sensors, like the air temperature sensor, engine temperature sensor, air pressure sensor, throttle position sensor and



oxygen sensor signal.

5.3.2 CKP Signal Acquisition

The CKP signal is extracted from the engine ignition trigger sensor, the voltage of original signal is high, so it must be converted into a 0~5V digital pulse voltage, can be processed to identify ECU, then ECU can get the information of engine speed and piston position. The voltage of signal from trigger sensor must be higher than 2V.

5.3.3 Fuel Injector Drive

Fuel injector drive circuit

MCU can control the MOSFET to be ON or OFF, and then the injector will be ON or OFF. So the ECU can control the injector to inject the accurately fuel. For gasoline engine, the stoic AFR (air/fuel ratio) is 14.7.

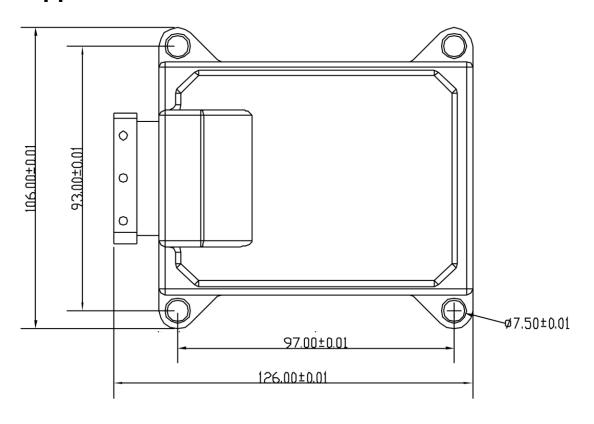
5.3.4 Ignition control

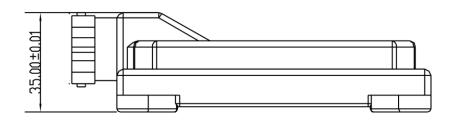
The 4T2C ECU can give a 4V pulse signal to control a CDI system. The CDI must be appropriative, which cannot adjust the ignition timing by CDI self.

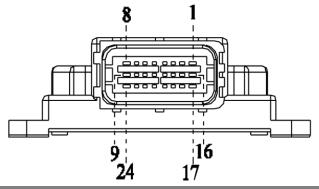
Note: the 4T2C ECU cannot driver an ignition coil directly.

5.4 Matters Needing Attention

- In the installation, the ECU should be installed at the end to reduce the damage of the electrostatic.
- The power supply should be disconnected before the ECU is installed.


- For the first time to use the ECU, in order to get the right TPS information,
 please operate as following:
 - ♦ Close the throttle , in the idle position;
 - ♦ Key on, waiting for more than 5 seconds;
 - ♦ Open the throttle fully, waiting for more than 5 seconds;
 - ♦ Close the key switch, waiting for more than 5 seconds.
- Try to avoid ECU suffered more than 16V voltages.
- ECU should be stored in a dry, dust-free environment, not exposed to any liquid waste.


6 Malfunction Indicator and Elimination


The fault phenomenon	Cause analysis	Elimination method	
Trouble light shining	Parts are bad	According to the	
		software read failure	
After open the key switch, oil	1. The ECU without	1. Check the red	
pump does not work	electricity	power cord and	
	2. The relay is	fuse	
	damaged	2. Replace the relay	
	3. The ECU has been	3. Replace the ECU	
	damaged		

7. Appendix: Mechanical CAD Size

